\qquad

C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name: Mathematics-I

Subject Code:4SC01MAT1/4SC01MTC1
Semester: 1
Date: 10/03/2021

Branch: B.Sc. (All)
Time: 11:00 To 02:00
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$ then the characteristic equation of A is \qquad .
(a) $x^{2}-3 x+2$
(b) $x^{2}+3 x-2$
(c) $x^{2}+x+1$
(d) $x^{2}-x-1$
b If $y=\frac{1}{a x+b}$ then $y_{n}=$ \qquad .
c The rank of identity matrix of order 3 is \qquad .
(a) 1
(b) 2
(c) 3
(d) 4
d $\frac{d y}{d x}+P(x) y=Q(x)$, is differential equation of the type \qquad -
(a) Homogeneous
(b)Bernoulli's
(c)exact
(d)linear
e The order of differential equation $\frac{d^{2} y}{d x^{2}}=1+\left(\frac{d y}{d x}\right)^{2}$.
f The general solution of $y=x p-p^{2}+\log p$ is
(a) $y=p x+5$
(b) $y=c x-c^{2}$
(c) $y=x \sin x+c$
(d) $y=x c-c^{2}+\log c$
g The Eigen value of Hermitian matrix are \qquad .
(a)Real
(b)Complex
(c)Purely imaginary
(d)None of these
h If $y=x^{10}$ then y_{11} equal to
(a) 11 !
(b) 10 !
(c) 0
(d) $11 x^{10}$
i The value of θ in polar form.
(a) $\tan ^{-1} \frac{y}{x}$
(b) $\tan \frac{y}{x}$
(c) 1
(d) $\sin ^{-1} \frac{y}{x}$
j Cartesian co-ordinates of polar co-ordinates $\left(1, \frac{\pi}{2}\right)$ is \qquad .
(a) $(1, \sqrt{3})$
(b) $(0,1)$
(c) $(1,-\sqrt{3})$
(d)None of these
\mathbf{k} To evaluate indeterminate forms we use \qquad .
(a) Leibnitz's rule
(b) Rolle's formula
(c) Taylor's formula
(d) L'Hospital's rule

1 Evaluate: $\lim _{x \rightarrow 1} \frac{\log x}{x-1}$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a Find $n^{\text {th }}$ derivatives of $\cos x \cos 2 x \cos 3 x$.05
b If $y=\left(\sin ^{-1} x\right)^{2}$, show that 05

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0 .
$$

c Expand $e^{x} \sin x$ in power of x by Maclurin's series.

Q-3 Attempt all questions
a Evaluate: $x \xrightarrow{\lim } 0 \frac{e^{x}-e^{-x}-2 \log (1+x)}{x \sin x}$
b Verify the Cauchy's mean value theorem for the function

$$
f(x)=\sin x, g(x)=\cos x, \forall x \in\left[-\frac{\pi}{2}, 0\right] .
$$

c Find the distance between two polar co-ordinates.
A $\left(2,10^{\circ}\right), B\left(2,40^{\circ}\right)$
Q-4 Attempt all questions
a. Find eigen value of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
b. For what value of λ, the following system of equations have no solution.
$2 x-3 y+6 z-5 t=3 ; y-4 z+t=1 ; 4 x-5 y+8 z-9 t=\lambda$
c. Find inverse of the matrix $\left[\begin{array}{ccc}4 & -2 & 3 \\ 2 & 4 & -1 \\ 0 & -2 & 1\end{array}\right]$.

Q-5 Attempt all questions

a. Solve given system of equation by using Gauss-Elimination method.

$$
x+2 y-z=5, \quad 3 x-y+3 z=7, \quad 4 x-2 y+4 z=12
$$

b. Verify Cayley-Hamilton theorem for the matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \tag{14}\\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

Q-6 Attempt all questions

a. State and prove Leibnitz's theorem.
b. Solve: $p^{2}-7 p+10=0 \quad 05$
c. Check whether the equation $\left(x^{2}-a y\right) d x+\left(y^{2}-a x\right) d y=0$ is exact 02 or not?

Q-7 Attempt all questions
a. Solve: $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0 \quad 05$
b. Solve: $x^{2} \frac{d y}{d x}=3 x^{2}-2 x y+1 \quad 05$
c. Find the equation of sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+\quad 04$ $3 y+4 z=5$ and the point $(1,2,3)$.

Q-8 Attempt all questions

a Obtain spherical and cylindrical co-ordinates of the point whose cartesian 07
co-ordinates are $(-\sqrt{3},-1,2 \sqrt{3})$.
b. Evaluate: $x \xrightarrow{\lim \max }\left(\frac{\pi}{2}\right)(\sin x)^{\tan x}$
c. Find equation of sphere of diameter points are $(1,-1,-3)$ and $(-5,-3,0)$.

